

Alternative Calibration methods of radiometric detectors

Jarle Gran, Trinh Tran, Marit Ulset Nordsveen, Justervesenet (JV)

Eivind Bardalen, Per Øhlckers, USN

Ørnulf Nordseth, IFE

Ozhan Koybashi, SINTEF

Content

- I Existing primary standards
- II Embedded predictable standards
- III Dual mode detectors

Existing calibration techniques

0.01 % Unc

Existing calibration techniques

Existing calibration techniques

Why treat calibration object as a black box?

Self-referenced embedded standard

$$i_{ph} = r \cdot e$$

99.9 %

Self-referenced embedded standard

«Eliminate» δ – No doping diode

Confirmed internal losses around 100 ppm

Measurements @ 488 nm by Aalto University

Parameters	Fitted Values
Bulk Doping	1.4×10 ¹² cm ⁻³
Qf	4×10 ¹¹ cm ⁻²
Bulk lifetime	2.9ms
Surface recombination	8000 cm/s
Beam size	1007 μm×1290.2 μm Flat top

Intelligence into measurement system

Embedded predictable standard

Parameters	Fitted Values
Bulk Doping	1.4×10 ¹² cm ⁻³
Qf	4×10 ¹¹ cm ⁻²
Bulk lifetime	2.9ms
Surface recombination	8000 cm/s
Beam size	1007 μm×1290.2 μm Flat top

One wavelength measurement predicts full spectral range

Dual mode detector - photocurrent

Dual mode detector – optical heat

Step II-a

Dual mode detector – electrical heat

Dual mode detector – heat equivalence

Optical heating

Electrical heating

Simulated heat nonequivalence:

- < 500 ppm at 300 K
- < 0.7 ppm at 60 K
- < 0.2 ppm at 40 K

Measure e/h – equivalence between methods

Dual mode

Embedded predictable

Conclusions

Off-the-shelf silicon photodiodes are self-referenced standards to 99.9%

Custom PQED photodiodes are self-referenced to 99.99 %

One wavelength measurement extracts full spectral responsivity

Self-calibrating detectors well suited in remote, unattended location capable of calibrating themselves and link to fundamental constants

Thank you!

chipS·CALe has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

«It's not about taking instruments to the lab - it's about taking the lab to the instrument»

jag@justervesenet.no